

Minimally Invasive Mitral Valve Repair with Artificial Chordae: Insights from a 6-Year Single-Center Study

Vinh Duc An Bui, Dinh Hoang Nguyen University Medical Center of Ho Chi Minh city

National training cooperation

Cardiovascular Center – Hue central Hospital

University Medical Center – Ho Chi Minh city

INTRODUCTION

- Superior Long-Term Results: MV repair is preferred over replacement for MR when repairable
- High success rate at centers with expertise in MV repair
- Minimally Invasive Mitral Valve Repair (MIMVR)
 - Safety and Effectiveness
 - Reduced Morbidity: Less incidence of stroke, atrial fibrillation, renal failure
 - Shorter Hospital Stay: Beneficial for carefully selected patients

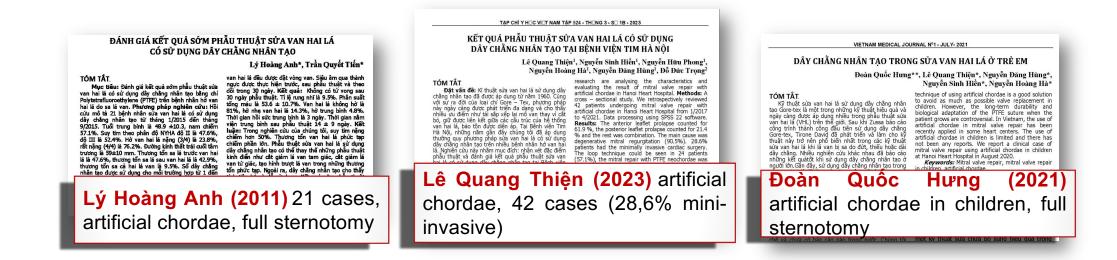
INTRODUCTION

- Carpentier's Techniques: annuloplasty rings and resection
 - Issues: Limited reproducibility and steep learning curve
- Artificial Chordae
 - Zussa and Frater
 - Widely adopted for its long-term effectiveness
- MIMVR
 - Need a simple, reproducible technique \rightarrow artificial chordae
 - Technical Complexities: correct length of artificial chordae, placement accuracy
 - Variability in Outcomes: Learning curve, outcome variation, lack of standardized protocols

Etiology Trends in MV Disease and Repair in Vietnam

- Study by Cazaubiel and lung
 - Analysis of 2734 MV surgery patients in Vietnam
 - From 1995-2010
- Findings

0433

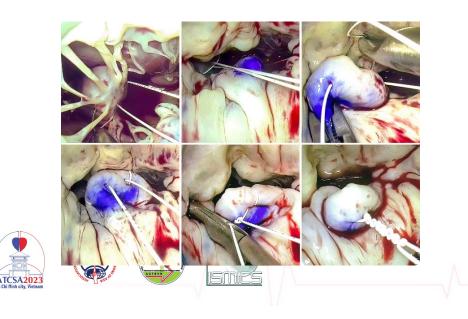

Evolution of mitral organic valve disease in Vietnam during last two decades

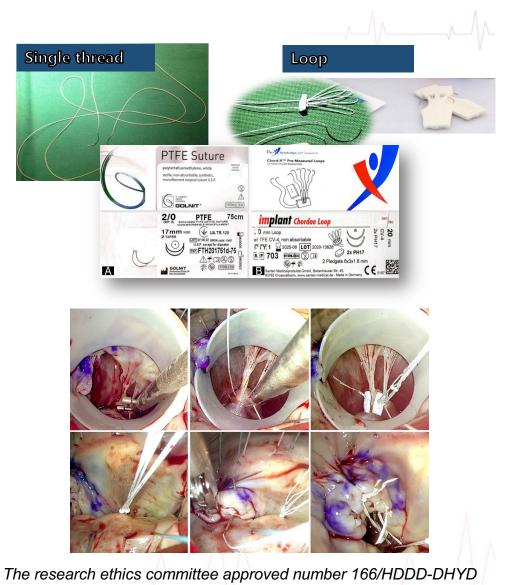
Inès Cazaubiel (1), Bernard Iung (2) (1) CHU Hôpital Saint Antoine-APHP, Cardiologie, Paris, France – (2) CHU Bichat-Claude Bernard-APHP, Cardiologie, Paris, France

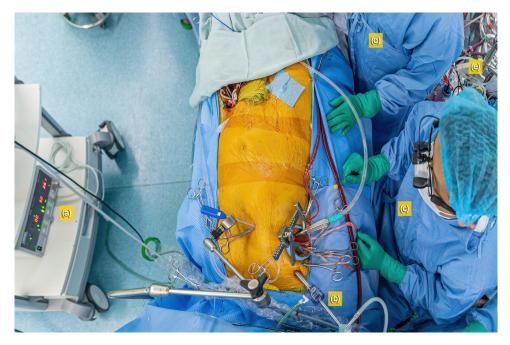
Introduction: Currently, degenerative etiologies of valvular diseases predominate in developed countries, but there are few data in developing countries like Vietnam.

- 15.4% increase in degenerative etiology
- Significant rise in fibroelastic disease-related issues

Artificial chordae in Vietnam




- Our institute applied artificial chordae minimally since 2015
- Aims at evaluating MIMVR artificial chordae through right mini-thoracotomy at our single center


Material and Method

- Retrospective analysis at Ho Chi Minh UMC
- 3/2017 to 6/2023
- Severe DMR, single primary surgeon

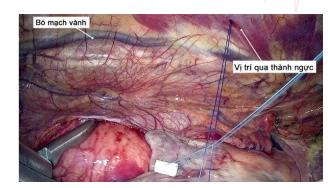
mini-invasive approach

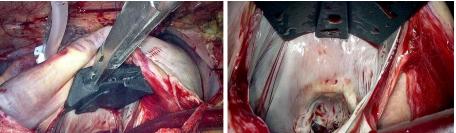
- Peripheral bypass via femoral vessel cannulation
- Open Seldinger-guided technique used for cannulation

mini-invasive approach

• Supine position

- A 4-cm incision parallel to the anterior axillary line
- Dissected into the 4th right intercostal space




- Insertion of video camera port in the 3rd space
- Chitwood cross-clamp
- Administration of Custodiol solution

MV exposure

Leipzig description

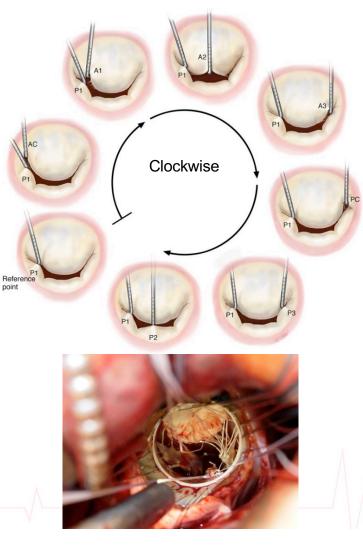
- Interatrial groove (Waterson) serves as the entry point to the left atrium
- Use of a left atrial retractor
- · Additional thread at the diaphragmatic center

The 10 Commandments for Mitral Valve Repair

Innovations 2020, Vol. 15(1) 4–10 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1556984519883875 journals.sagepub.com/home/inv

Marc Gillinov¹, MD, Daniel J. P. Burns¹, MD, MPhil¹, and Per Wierup¹, MD, PhD

- Place Annuloplasty Sutures First
- Valve Inspection
- Choose Repair Techniques That Work
- Use a Prosthetic Annuloplasty
- Avoid SAM
- Wait for Recovery of Ventricular Function
 - Before assessing the valve Repair
 - Do Not Accept a Bad Repair



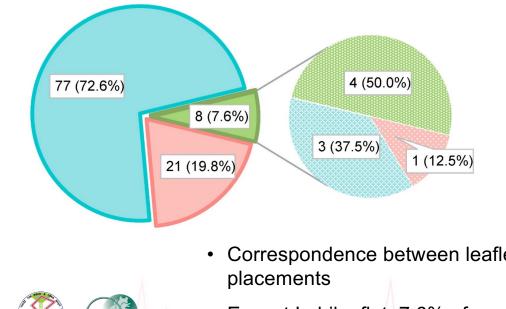
Valve Analysis: Carpenter's principles

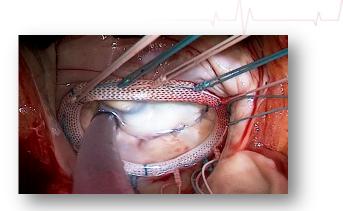
Evaluation of each valve leaflet segment

- Clockwise
- Chordae height, tissue quality, potential areas of rupture
- Reference chord at P1
- Saline test: locate regurgitative sites and assess coaptation
 - **ZONES** distinguish any residual regurgitation due to **secondary lesions**

Our data

- Total of 106 cases
- Average age: 50.7 ± 12.4 years old
- Male 75.5%


Pre & Perioperative characteristics	N = 106
Type of degeneration	58,3 ± 6,6
• FED	88 (83%)
Barlow	4 (3,8%)
Forme fruste	14 (13,2%)
Echocardiography	
LVEDD (mm)	58,3 ± 6,6
LVESD (mm)	36,7 ± 5,1
LVEF (%)	63,3 ± 6,2
PAPS (mmHg)	40,1 ± 18,0



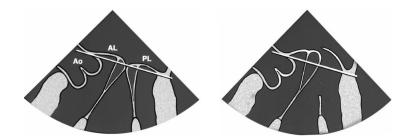
Our data

TCSA202

- 100% artificial chordae + annular ring
- Average ring: 31,4 ± 2,4 mm

Anterior prolapse: Anterior neochordae Posterior prolapse: Posterior neochordae Bileaflet prolapse: Anterior neochordae Posterior neochordae Bileaflet neochordae

- Correspondence between leaflet prolapse and artificial chordae
- Except In bileaflet: 7.6% of cases


Our data: Bileaflet prolapse

Challenging

- First set annulus sutures
- · Focus on the posterior leaf prolapse, then evaluate anterior prolapse
- Our data: 37.5% bileaflet using only posterior neochordae

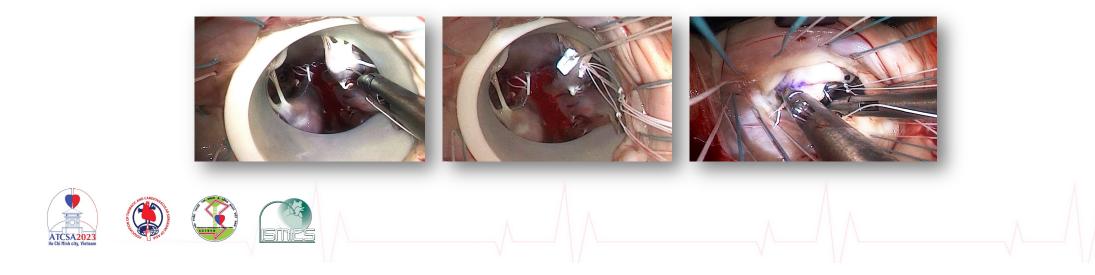
Is Anterior Leaflet Repair Always Necessary in Repair of Bileaflet Mitral Valve Prolapse?

A. Marc Gillinov, MD, Delos M. Cosgrove III, MD, Sudhir Wahi, MD, William J. Stewart, MD, Bruce W. Lytle, MD, Nicholas G. Smedira, MD, Patrick M. McCarthy, MD, Per N. Wierup, MD, Joseph F. Sabik, MD, and Eugene H. Blackstone, MD

- Many bileaflet prolapses might not show significant anterior chordae issues
- Even if echo evidence seems to indicate

• First repair of the posterior leaflet, any anterior prolapse is then considered

Our data: Artificial chordae characteristics


Artificial chordae characteristics	N = 106
Type of artificial chordae	
Single technique	43 (40,5%)
Loop technique	52 (49,1%)
Single & Loop technique	11 (10,4%)
Chordae per Patient	
• 1 pair	30 (28,3%)
2 pairs	38 (35,9%)
3 pairs	27 (25,5%)
• 4-5 pairs	10 (9,4%)
6 pairs	1 (0,9%)
Average 2.2 ± 1.1 pairs	

- We typically used ≥ 2 pairs
 - 2 pairs: 2 single PTFE threads
- Maximum 2 loops
 - 2 loops \rightarrow 6 8 pairs \rightarrow adequate for most MVr
- Tirone David: benefits of multi-chordal
 placement

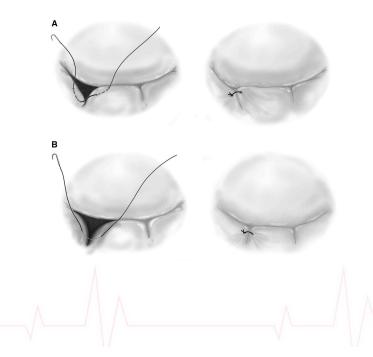
Our data: papillary muscle (PM) implanted

Artificial chordae characteristics	N = 106
PM implanted	
Anterolateral PM	22 (20,7%)
Posteromedian PM	59 (55,7%)
Both PM	25 (23,6%)

- Sutures 3-5mm below the PM apex
- Careful in leaner PM

Commisure or Indentation prolapse

Additional technique	N = 106
Indentation Closure	23 (21,7%)
Commisure Closure	21 (19,8%)
Edge-to-Edge Repair (Alfieri)	4 (3,8%)

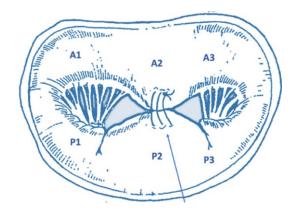

Secondary lesion

- Comissural prolapse is not uncommon \rightarrow Residual lesions
- Indentation can develop as the leaflet volume expands (Myxomatous)

Challenging in diagnosis: may be missed and difficult to detect through echo

- overlap with regurgitation caused by the primary lesion
- easily identified through a saline test

Repair method: 1 – 2 single stich(es), Magic stitches of Carpentier


Alfieri technique

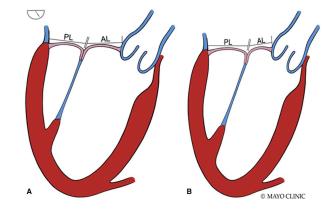
4 cases

• 2 cases: due to observed moderate leakage during the

saline test

- Rings \geq 32 mm were used
- Caution when one of the two new orifices is less than 2 cm in diameter

SMALL RINGS AND EDGE-TO-EDGE TECHNIQUE ELEVATE TRANSMITRAL GRADIENTS IN MITRAL VALVE REPAIR



SAM

• Our approach: shorter chordae to position the posterior leaflet closer to

the LV \rightarrow shift the coapt zone posteriorly \rightarrow reduce risk of SAM

- Alfieri technique: Particularly in Barlow with a P2 height ≥ 1.5 2 cm identified during operation
- Our data: 11 (10.4%) showed mild SAM as TEE
 - Discharge: decreased to 2 (1.9%), not observed in follow-ups

Residual MR via TEE

- · Restart CPB & re-clamp to adjust the repair or consider valve replacement
 - Secondary lesions \rightarrow Addressable
- Our data: 2 (1.9%) re-clamp
- Case 1:
 - Primary neochordae A3, still regurgitate at A3 via TEE
 - Reclamp and assessment suggested: the A3 neochordae too long, perhaps due to the PTFE not extend completely during saline test → length adjustment (replace the neochord)
- Case 2:
 - P3 single pair neochordae not enough \rightarrow reclamp \rightarrow add an additional pair at P3

Our data: Discharge

Postoperative data	N = 106
Inturbation time (hours)	9.0 [5.3; 16.8]
ICU time (days)	2.8 [1.9; 4.2]
Re-operation Due to Bleeding	3 (2,8%)
Pneumonia	9 (8,5%)
CRRT	1 (0,9%)
IABP	1 (0,9%)
Stroke	1 (0,9%)
Peripheral vessel complication	2 (1,9%)
Hospital death	0 (0,0%)

Predischarge MR	N = 106
Predischarge MR	
None/trivial MR	94 (88,7%)
Moderate MR	12 (11,3%)

No severe MR at dischare

Our data: Follow-up

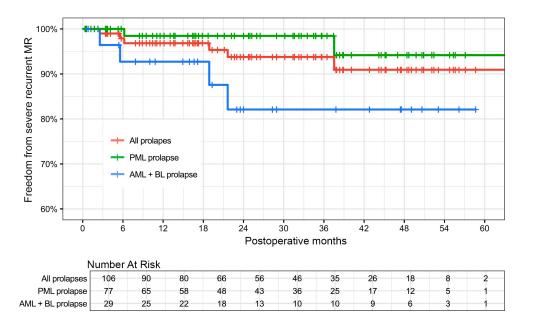
- 104 pts were regularly monitored with an follow-up duration of 28.2 ± 17.5 months
- Longest: 63.9 months (5 years)

Follow-up	N = 104
Mortality	2 (1,9%)
Indication for Reoperation (Mitral Valve)	1 (1,0%)
Stroke	1 (1,0%)

- Re-surgery indicated pts: P3 prolapse, pulmonary hypertension (PAPS 75 mmHg), severe TR, LVEDD 64 mm
- Initial repair: artificial chordae at P3 + 28-mm annular ring + tricuspid valve repair
- 3 years post-surgery: exertional dyspnea, echo showed severe MR due to P3 prolapse

Our data: MV Repair Outcomes

Follow-up MV condition	N = 104
Mitral Regurgitation Severity	
None/Trivial	78 (75%)
Medium	20 (19,2%)
Severe	6 (5,8%)


- 6 (5.8%) severe MR:
 - 1 re-surgery indicated (1.0%) symptomatic
 - 5 observation (4.8%) asymptomatic
- **Reoperation rates:** lower than recurrence rates, factors: asymptomatic, refusal reop, advanced age, high risk of postop complications
- David et al: 20 years, 6% reoperation for MV-related issues, rate of severe MR was x 3 times higher
- Criteria for reoperations of late MR recurrence are different from initial MVr in asymptomatic pts:
 - The feasibility of another repair for the MV could be limited
 - If have to $MVR \rightarrow$ outcomes might be worse than no reoperation

Our data: compare

- Postoperative mortality: 0.0%, stroke rate: 1.1%.
- Two-year mortality: 2.2% (cardiac deaths), severe MR rate: 8.9%
- No hemolytic anemia
- **Comparable to Mini-Mitral International Registry** (mortality 1.7%, stroke 1.7%)

Our data: Free from severe recurrent MR

KM curves to evaluate free from re-regurgitation rates at:

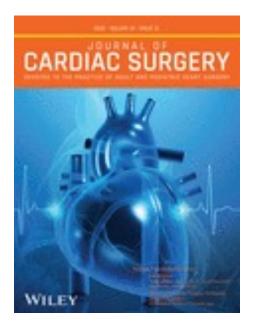
- 1, 2, and 4 years
- 97%, 94%, and 91%, respectively.

• Lang: 97%, 93%, and 87% for freedom from MR recurrence at

intervals of 1, 5, and 10 years, respectively

Limitations

- Retrospective design may lead to biases and data limitations.
- Lack of control group hinders definitive conclusions.
- Small, single-center sample limits generalizability.
- Future larger, multi-center prospective studies needed for stronger evidence.


CONCLUSION

- Artificial chordae in MIMVR: Promising for various MV issues.
- Precision in chordae deployment critical for success.
- Initial experience: Right mini-thoracotomy with artificial chordae in

MIMVR is viable, safe, effective

Accepted for publication

Dear Dr. Vinh D.A. Bui,

I am delighted to inform you that the review of your manuscript 5510950 titled "Minimally Invasive Mitral Valve Repair with Artificial Chordae: Insights from a 6-Year Single-Center Study" has been completed and your article has been accepted for publication in Journal of Cardiac Surgery.

If you have deposited your manuscript on a preprint server, now would be a good time to update it with the accepted version. If you have not deposited your manuscript on a preprint server, you are free to do so.

THANK YOU!

